#T1. 测试

测试

当前没有测试数据。

[ABC117_D] Problem Statement

Original Link


Score : 400400 points

Problem Statement

You are given NN non-negative integers A1,A2,...,ANA_1, A_2, ..., A_N and another non-negative integer KK .

For a integer XX between 00 and KK (inclusive), let f(X)=(Xf(X) = (X XOR A1)A_1) ++ (X(X XOR A2)A_2) ++ ...... ++ (X(X XOR AN)A_N) .

Here, for non-negative integers aa and bb , aa XOR bb denotes the bitwise exclusive OR of aa and bb .

Find the maximum value of ff .

What is XOR?

The bitwise exclusive OR of aa and bb , XX , is defined as follows:

  • When XX is written in base two, the digit in the 2k2^k 's place ( k0k \geq 0 ) is 11 if, when written in base two, exactly one of AA and BB has 11 in the 2k2^k 's place, and 00 otherwise.

For example, 33 XOR 5=65 = 6 . (When written in base two: 011011 XOR 101=110101 = 110 .)

Constraints

  • All values in input are integers.
  • 1N1051 \leq N \leq 10^5
  • 0K10120 \leq K \leq 10^{12}
  • 0Ai10120 \leq A_i \leq 10^{12}

Input

Input is given from Standard Input in the following format:

$N$   $K$ 

 $A_1$   $A_2$   $...$   $A_N$

Output

Print the maximum value of ff .


Sample Input 1

3 7

1 6 3

Sample Output 1

14

The maximum value is: f(4)=(4f(4) = (4 XOR 1)+(41) + (4 XOR 6)+(46) + (4 XOR 3)=5+2+7=143) = 5 + 2 + 7 = 14 .


Sample Input 2

4 9

7 4 0 3

Sample Output 2

46

Sample Input 3

1 0

1000000000000

Sample Output 3

1000000000000